Diagnosing error in object detectors

  • Authors:
  • Derek Hoiem;Yodsawalai Chodpathumwan;Qieyun Dai

  • Affiliations:
  • Department of Computer Science, University of Illinois at Urbana-Champaign;Department of Computer Science, University of Illinois at Urbana-Champaign;Department of Computer Science, University of Illinois at Urbana-Champaign

  • Venue:
  • ECCV'12 Proceedings of the 12th European conference on Computer Vision - Volume Part III
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper shows how to analyze the influences of object characteristics on detection performance and the frequency and impact of different types of false positives. In particular, we examine effects of occlusion, size, aspect ratio, visibility of parts, viewpoint, localization error, and confusion with semantically similar objects, other labeled objects, and background. We analyze two classes of detectors: the Vedaldi et al. multiple kernel learning detector and different versions of the Felzenszwalb et al. detector. Our study shows that sensitivity to size, localization error, and confusion with similar objects are the most impactful forms of error. Our analysis also reveals that many different kinds of improvement are necessary to achieve large gains, making more detailed analysis essential for the progress of recognition research. By making our software and annotations available, we make it effortless for future researchers to perform similar analysis.