(MP)2T: multiple people multiple parts tracker

  • Authors:
  • Hamid Izadinia;Imran Saleemi;Wenhui Li;Mubarak Shah

  • Affiliations:
  • Computer Vision Lab, University of Central Florida, Orlando;Computer Vision Lab, University of Central Florida, Orlando;Computer Vision Lab, University of Central Florida, Orlando;Computer Vision Lab, University of Central Florida, Orlando

  • Venue:
  • ECCV'12 Proceedings of the 12th European conference on Computer Vision - Volume Part VI
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present a method for multi-target tracking that exploits the persistence in detection of object parts. While the implicit representation and detection of body parts have recently been leveraged for improved human detection, ours is the first method that attempts to temporally constrain the location of human body parts with the express purpose of improving pedestrian tracking. We pose the problem of simultaneous tracking of multiple targets and their parts in a network flow optimization framework and show that parts of this network need to be optimized separately and iteratively, due to inter-dependencies of node and edge costs. Given potential detections of humans and their parts separately, an initial set of pedestrian tracklets is first obtained, followed by explicit tracking of human parts as constrained by initial human tracking. A merging step is then performed whereby we attempt to include part-only detections for which the entire human is not observable. This step employs a selective appearance model, which allows us to skip occluded parts in description of positive training samples. The result is high confidence, robust trajectories of pedestrians as well as their parts, which essentially constrain each other's locations and associations, thus improving human tracking and parts detection. We test our algorithm on multiple real datasets and show that the proposed algorithm is an improvement over the state-of-the-art.