Study on the data flow balance in NFS server with iSCSI

  • Authors:
  • Nianmin Yao;Yong Han;Shaobin Cai;Qilong Han

  • Affiliations:
  • College of Computer Science and Technology, Harbin Engineering University, China;College of Computer Science and Technology, Harbin Engineering University, China;College of Computer Science and Technology, Harbin Engineering University, China;College of Computer Science and Technology, Harbin Engineering University, China

  • Venue:
  • ICA3PP'12 Proceedings of the 12th international conference on Algorithms and Architectures for Parallel Processing - Volume Part I
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

With the developing of the architecture of networked storage, a new type of storage servers acting as the data conduits over the network emerge, which is called pass-through servers. A typical example is the NFS servers based on iSCSI whose one end is connected to NFS clients and the other is connected to iSCSI storage device. As a store-and-forward device, the NFS servers experience heavy load, which includes protocols and data copying overhead, so a lot of CPU resource is consumed. In this paper, we build a mathematical model for the flow of data in pass-through servers using queuing theory and put forward a scheme of CPU time distribution. This scheme can allocate time of CPU to the service of iSCSI and NFS reasonably. Consequently, the flow rate of data inside servers is accelerated and the system performance is enhanced. We carry out both simulation experiments and real experiments to prove the conclusions. The results show that, if we properly adjust the CPU time distribution ratio according to different request sizes and different ratios of read/write requests, the system can improve the throughput more than 17% compared to the original one and can greatly reduce the mean response time of the data forwarding tasks.