Secure hierarchical identity-based identification without random oracles

  • Authors:
  • Atsushi Fujioka;Taiichi Saito;Keita Xagawa

  • Affiliations:
  • NTT Secure Platform Laboratories, Musashino-shi, Tokyo, Japan;Tokyo Denki University, Adachi-ku, Tokyo, Japan;NTT Secure Platform Laboratories, Musashino-shi, Tokyo, Japan

  • Venue:
  • ISC'12 Proceedings of the 15th international conference on Information Security
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper proposes a generic construction of hierarchical identity-based identification (HIBI) protocols secure against impersonation under active and concurrent attacks in the standard model. The proposed construction converts a digital signature scheme existentially unforgeable against chosen message attacks, where the scheme has a protocol for showing possession of signing key. Our construction is based on the so-called certificate-based construction of hierarchical identity-based cryptosystems, and utilizes a variant of the well-known OR-proof technique to ensure the security against impersonation under active and concurrent attacks. We also present several concrete examples of our construction employing the Waters signature (EUROCRYPT 2005), and other signatures. As results, its concurrent security of each instantiation is proved under the computational Diffie-Hellman (CDH) assumption, the RSA assumption, or their variants in the standard model. Chin, Heng, and Goi proposed an HIBI protocol passively and concurrently secure under the CDH and one-more CDH assumption, respectively (FGIT-SecTech 2009). However, its security is proved in the random oracle model.