Simulation analysis of data processing activities in Compact Muon Solenoid physics

  • Authors:
  • Ciprian Dobre

  • Affiliations:
  • Department of Computer Science, University POLITEHNICA of Bucharest, Romania

  • Venue:
  • Simulation
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

The scale, complexity and worldwide geographical spread of the Large Hadron Collider (LHC) computing and data analysis problems are unprecedented in scientific research. The complexity of processing and accessing this data is increased substantially by the size and global span of the major experiments, combined with the limited wide-area network bandwidth available. This paper discusses the latest generation of the MONARC (MOdels of Networked Analysis at Regional Centers) simulation framework, as a design and modeling tool for large-scale distributed systems applied to high-energy physics experiments. We present a simulation study designed to evaluate the capabilities of the current real-world distributed infrastructures deployed to support existing LHC physics analysis processes and the means by which the experiments band together to meet the technical challenges posed by the storage, access and computing requirements of LHC data analysis. The Compact Muon Solenoid (CMS) experiment, in particular, uses a general-purpose detector to investigate a wide range of physics. We present a simulation study designed to evaluate the capability of its underlying distributed processing infrastructure to support the physics analysis processes. The results, made possible by the MONARC model, demonstrate that the LHC infrastructures are well suited to support the data processes envisioned by the CMS computing model.