Maximum flow networks for stability analysis of LEGO®Structures

  • Authors:
  • Martin Waßmann;Karsten Weicker

  • Affiliations:
  • HTWK Leipzig, IMN, Leipzig, Germany;HTWK Leipzig, IMN, Leipzig, Germany

  • Venue:
  • ESA'12 Proceedings of the 20th Annual European conference on Algorithms
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

To determine the stability of LEGO® structures is an interesting problem because the special binding mechanism prohibits the usage of methods of structural frame design or dynamic physics engines. We propose a new two-phase approach where instances of maximum-flow networks are constructed. In a first phase, the distribution of compressive and tensile forces is computed which is used in a second phase to model the moments within the structure. By solving the maximum-flow networks we can use the resulting flow as a sufficient criterion for the stability of the structure. The approach is demonstrated for two exemplary structures which outperform previous results using a multi-commodity flow network.