Registration of brainstem surfaces in adolescent idiopathic scoliosis using discrete ricci flow

  • Authors:
  • Minqi Zhang;Fang Li;Ying He;Shi Lin;Defeng Wang;Lok Ming Lui

  • Affiliations:
  • School of Computer Engineering, Nanyang Technological University, Singapore;School of Computer Engineering, Nanyang Technological University, Singapore;School of Computer Engineering, Nanyang Technological University, Singapore;Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, China, Dept. of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong;CUHK Shenzhen Research Institute, Shenzhen, China, Dept. of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong;Department of Mathematics, CUHK, Hong Kong

  • Venue:
  • MICCAI'12 Proceedings of the 15th international conference on Medical Image Computing and Computer-Assisted Intervention - Volume Part II
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

Adolescent Idiopathic Scoliosis (AIS) characterized by the 3D spine deformity affects about 4% schoolchildren worldwide. Several studies have demonstrated the malfunctioning of postural balance, proprioception, and equilibrium control in patients with AIS. Since these functions are closely related to structures in and around the brainstem, the morphometry of the brainstem surface is of utmost importance. In this paper, we propose an effective method to accurately compute the registration between brainstem surfaces. Four consistent features, which describe the global geometry of the brainstem, are automatically extracted to guide the surface registration. Using the discrete Ricci flow method, brainstem surfaces are parameterized conformally onto the quadrilaterally-faced hexahedron, through which the brainstem registration can be obtained. Our registration algorithm can guarantee the exact landmark correspondence between brainstem surfaces. With the obtained registration, a shape energy can be defined to measure the local shape difference between different brainstem surfaces. We have tested our algorithms on 30 real brainstem surfaces extracted from MRIs of 15 normal subjects and 15 AIS patients. Experimental results show the efficacy of the proposed algorithm to register brainstem surfaces, which matches landmark features consistently. The computed registration can be used for the morphometry of brainstems.