A boolean model for enumerating minimal siphons and traps in petri nets

  • Authors:
  • Faten Nabli;François Fages;Thierry Martinez;Sylvain Soliman

  • Affiliations:
  • EPI Contraintes, Inria Paris-Rocquencourt, France;EPI Contraintes, Inria Paris-Rocquencourt, France;EPI Contraintes, Inria Paris-Rocquencourt, France;EPI Contraintes, Inria Paris-Rocquencourt, France

  • Venue:
  • CP'12 Proceedings of the 18th international conference on Principles and Practice of Constraint Programming
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

Petri nets are a simple formalism for modeling concurrent computation. Recently, they have emerged as a promising tool for modeling and analyzing biochemical interaction networks, bridging the gap between purely qualitative and quantitative models. Biological networks can indeed be large and complex, which makes their study difficult and computationally challenging. In this paper, we focus on two structural properties of Petri nets, siphons and traps, that bring us information about the persistence of some molecular species. We present two methods for enumerating all minimal siphons and traps of a Petri net by iterating the resolution of Boolean satisfiability problems executed with either a SAT solver or a CLP(B) program. We compare the performances of these methods with respect to a state-of-the-art algorithm from the Petri net community. On a benchmark with 80 Petri nets from the Petriweb database and 403 Petri nets from curated biological models of the Biomodels database, we show that miniSAT and CLP(B) solvers are overall both faster by two orders of magnitude with respect to the dedicated algorithm. Furthermore, we analyse why these programs perform so well on even very large biological models and show the existence of hard instances in Petri nets with unbounded degrees.