Foundational aspects of multiscale digitization

  • Authors:
  • Agathe Chollet;Guy Wallet;Laurent Fuchs;Eric Andres;Gaëlle Largeteau-Skapin

  • Affiliations:
  • Laboratoire MIA, Université de La Rochelle, Avenue Michel Crépeau 17042 La Rochelle cédex, France;Laboratoire MIA, Université de La Rochelle, Avenue Michel Crépeau 17042 La Rochelle cédex, France;Laboratoire XLIM SIC, UMR 6172, Université de Poitiers, BP 30179 86962 Futuroscope Chasseneuil cédex, France;Laboratoire XLIM SIC, UMR 6172, Université de Poitiers, BP 30179 86962 Futuroscope Chasseneuil cédex, France;Laboratoire XLIM SIC, UMR 6172, Université de Poitiers, BP 30179 86962 Futuroscope Chasseneuil cédex, France

  • Venue:
  • Theoretical Computer Science
  • Year:
  • 2012

Quantified Score

Hi-index 5.23

Visualization

Abstract

In this article, we describe the theoretical foundations of the @W-arithmetization. This method provides a multi-scale discretization of a continuous function that is a solution of a differential equation. This discretization process is based on the Harthong-Reeb line HR"@w. The Harthong-Reeb line is a linear space that is both discrete and continuous. This strange line HR"@w stems from a nonstandard point of view on arithmetic based, in this paper, on the concept of @W-numbers introduced by Laugwitz and Schmieden. After a full description of this nonstandard background and of the first properties of HR@w, we introduce the @W-arithmetization and we apply it to some significant examples. An important point is that the constructive properties of our approach leads to algorithms which can be exactly translated into functional computer programs without uncontrolled numerical error. Afterwards, we investigate to what extent HR"@w fits Bridges's axioms of the constructive continuum. Finally, we give an overview of a formalization of the Harthong-Reeb line with the Coq proof assistant.