A robust objective function of joint approximate diagonalization

  • Authors:
  • Yoshitatsu Matsuda;Kazunori Yamaguchi

  • Affiliations:
  • Department of Integrated Information Technology, Aoyama Gakuin University, Sagamihara-shi, Kanagawa, Japan;Department of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan

  • Venue:
  • ICANN'12 Proceedings of the 22nd international conference on Artificial Neural Networks and Machine Learning - Volume Part II
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

Joint approximate diagonalization (JAD) is a method solving blind source separation, which can extract non-Gaussian sources without any other prior knowledge. However, it is not robust when the sample size is small because JAD is based on an algebraic objective function. In this paper, a new robust objective function of JAD is derived by an information theoretic approach. It has been shown in previous works that the "true" probabilistic distribution of non-diagonal elements of approximately-diagonalized cumulant matrices in JAD is Gaussian with a fixed variance. Here, the distribution of the diagonal elements is also approximated as Gaussian where the variance is an adjustable parameter. Then, a new objective function is defined as the likelihood of the distribution. Numerical experiments verify that the new objective function is effective when the sample size is small.