Low complexity proto-value function learning from sensory observations with incremental slow feature analysis

  • Authors:
  • Matthew Luciw;Juergen Schmidhuber

  • Affiliations:
  • IDSIA-USI-SUPSI, Manno-Lugano, Switzerland;IDSIA-USI-SUPSI, Manno-Lugano, Switzerland

  • Venue:
  • ICANN'12 Proceedings of the 22nd international conference on Artificial Neural Networks and Machine Learning - Volume Part II
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

We show that Incremental Slow Feature Analysis (IncSFA) provides a low complexity method for learning Proto-Value Functions (PVFs). It has been shown that a small number of PVFs provide a good basis set for linear approximation of value functions in reinforcement environments. Our method learns PVFs from a high-dimensional sensory input stream, as the agent explores its world, without building a transition model, adjacency matrix, or covariance matrix. A temporal-difference based reinforcement learner improves a value function approximation upon the features, and the agent uses the value function to achieve rewards successfully. The algorithm is local in space and time, furthering the biological plausibility and applicability of PVFs.