A dynamic binding mechanism for retrieving and unifying complex predicate-logic knowledge

  • Authors:
  • Gadi Pinkas;Priscila Lima;Shimon Cohen

  • Affiliations:
  • Center for Academic Studies, Israel;Federal Rural University of Rio de Janeiro, Brazil;Center for Academic Studies, Israel

  • Venue:
  • ICANN'12 Proceedings of the 22nd international conference on Artificial Neural Networks and Machine Learning - Volume Part I
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

We show how to encode, retrieve and process complex structures equivalent to First-Order Logic (FOL) formulae, with Artificial Neural Networks (ANNs) designed for energy-minimization. The solution constitutes a binding mechanism that uses a neural Working Memory (WM) and a long-term synaptic memory (LTM) that can store both procedural and declarative FOL-like Knowledge-Base (KB). Complex structures stored in LTM are retrieved into the WM only upon need, where they are further processed. The power of our binding mechanism is demonstrated on unification problems: as neurons are dynamically allocated from a pool, most generally unified structures emerge at equilibrium. The network's size is O(n·k), where n is the size of the retrieved FOL structures and k is the size of the KB. The mechanism is fault-tolerant, as no fatal failures occur when random units fail. The paradigm can be used in a variety of applications, such as language processing, reasoning and planning.