Dynamically-Driven timed automaton abstractions for proving liveness of continuous systems

  • Authors:
  • Rebekah Carter;Eva M. Navarro-López

  • Affiliations:
  • School of Computer Science, The University of Manchester, UK;School of Computer Science, The University of Manchester, UK

  • Venue:
  • FORMATS'12 Proceedings of the 10th international conference on Formal Modeling and Analysis of Timed Systems
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

We look at the problem of proving inevitability of continuous dynamical systems. An inevitability property says that a region of the state space will eventually be reached: this is a type of liveness property from the computer science viewpoint, and is related to attractivity of sets in dynamical systems. We consider a method of Maler and Batt to make an abstraction of a continuous dynamical system to a timed automaton, and show that a potentially infinite number of splits will be made if the splitting of the state space is made arbitrarily. To solve this problem, we define a method which creates a finite-sized timed automaton abstraction for a class of linear dynamical systems, and show that this timed abstraction proves inevitability.