Communication-Efficient self-stabilization in wireless networks

  • Authors:
  • Tomoya Takimoto;Fukuhito Ooshita;Hirotsugu Kakugawa;Toshimitsu Masuzawa

  • Affiliations:
  • Graduate School of Information Science and Technology, Osaka University, Japan;Graduate School of Information Science and Technology, Osaka University, Japan;Graduate School of Information Science and Technology, Osaka University, Japan;Graduate School of Information Science and Technology, Osaka University, Japan

  • Venue:
  • SSS'12 Proceedings of the 14th international conference on Stabilization, Safety, and Security of Distributed Systems
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

A self-stabilizing protocol is guaranteed to eventually reach a safe (or legitimate) configuration even when started from an arbitrary configuration. Most of self-stabilizing protocols require each process to keep communicating with all of its neighbors forever even after reaching a safe configuration. Such permanent communication impairs efficiency, but is necessary in nature of self-stabilization. The concept of communication-efficiency was introduced to reduce communication after reaching a safe configuration. The previous concept targets the point-to-point communication model, and is not appropriate to the wireless network model where a process can locally broadcast a message to its neighbors all at once. In this paper, we refine the concept of the communication-efficiency for the wireless network model, and investigate its possibility in self-stabilization for some fundamental problems; the minimal (connected) dominating set problem, the maximal independent set problem, and the spanning tree construction problem.