ManyCell: a multiscale simulator for cellular systems

  • Authors:
  • Joseph O. Dada;Pedro Mendes

  • Affiliations:
  • Manchester Institute of Biotechnology, UK,School of Computer Science, The University of Manchester, UK;Manchester Institute of Biotechnology, UK,School of Computer Science, The University of Manchester, UK,Virginia Bioinformatics Institute, Blacksburg, VA, UK

  • Venue:
  • CMSB'12 Proceedings of the 10th international conference on Computational Methods in Systems Biology
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

The emergent properties of multiscale biological systems are driven by the complex interactions of their internal compositions usually organized in hierarchical scales. A common representation takes cells as the basic units which are organized in larger structures: cultures, tissues and organs. Within cells there is also a great deal of organization, both structural (organelles) and biochemical (pathways). A software environment capable of minimizing the computational cost of simulating large-scale multiscale models is required to help understand the functional behaviours of these systems. Here we present ManyCell, a multiscale simulation software environment for efficient simulation of such cellular systems. ManyCell does not only allow the integration and simulation of models from different biological scales, but also combines innovative multiscale methods with distributed computing approaches to accelerate the process of simulating large-scale multiscale agent-based models. Thereby opening up the possibilities of understanding the functional behaviour of cellular systems in an efficient way.