Evaluating Shuttle radar and interpolated DEMs for slope gradient and soil erosion estimation in low relief terrain

  • Authors:
  • Anne E. Kinsey-Henderson;Scott N. Wilkinson

  • Affiliations:
  • CSIRO Land and Water, Private Mail Bag, Aitkenvale, Queensland 4814, Australia;CSIRO Land and Water, GPO Box 1666, Canberra, ACT 2601, Australia

  • Venue:
  • Environmental Modelling & Software
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

The error in slope gradient estimates provided by digital elevation models propagates to spatial modelling of erosion and other environmental attributes, potentially impacting land management priorities. This study compared the slope estimates of Shuttle Radar Topographic Mission (SRTM) DEMs with those generated by interpolation of topographic contours, at two grid cell resolutions. The magnitude and spatial patterns of error in DEM slope, and derived erosion estimates using the Revised Universal Soil Loss Equation (RUSLE), were evaluated at three sites in eastern Australia. The sites have low-relief terrain and slope gradients less than 15%, characteristics which dominate the global land surface by area and are often highly utilised. Relative to a reference DEM resampled to the same resolution (a measure of DEM 'quality'), the 90 m (3-s) SRTM DEM provided the best estimates of slopes, being within 20% for each 5% slope class outside alluvial floodplains where it over-predicted by up to 220%. Relative to a hillslope scale 10 m reference DEM, the 30 m (1-s) SRTM-derived DEM-S, provided slope gradient estimates slightly less biased towards under-prediction than the 90 m SRTM and significantly less biased on alluvial floodplains. In contrast, the 20 m vertical contour intervals underpinning the interpolated DEMs resulted in under-prediction of slope gradient by more than a factor of 5 over large contiguous areas (1 km^2). The 30 m DEM-S product provided the best estimate of hillslope erosion, being 3-4% better than the 90 m SRTM. The slope errors in the interpolated DEMs translated into generally poorer and less consistent erosion estimates than SRTM. From this study it is concluded that the SRTM DEM products, in particular the 30 m SRTM-derived DEM-S, provide estimates of slope gradient and erosion which are more accurate, and more consistent within and between low relief study sites, than interpolated DEMs.