Evasiveness through a circuit lens

  • Authors:
  • Raghav Kulkarni

  • Affiliations:
  • Centre for Quantum Technologies, Singapore, Singapore

  • Venue:
  • Proceedings of the 4th conference on Innovations in Theoretical Computer Science
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

A function f : {0, 1}n - {0, 1} is called evasive if its decision tree complexity is maximal, i.e., D(f) = n. The long-standing Anderaa-Rosenberg-Karp (ARK) Conjecture asserts that every non-trivial monotone graph property is evasive. The Evasiveness Conjecture (EC) is a generalization of ARK Conjecture from monotone graph properties to arbitrary monotone transitive Boolean functions. In this paper we study a weakening of the Evasiveness Conjecture called Weak Evasivenss Conjecture (weak-EC). The weak-EC asserts that every non-trivial monotone transitive Boolean function must have D(f) ≥ n1- ε, for every ε 0. The purpose of this note is to make some remarks on weak-EC that hint towards a plausible attack on EC. First we observe that weak-EC is equivalent to EC. Further we observe that ruling out only certain simple (monotone-NC1) counter-examples to weak-EC suffices to confirm EC in its whole generality. Finally we rule out some simple counter-examples to weak-EC (AC0 : unconditionally; and monotone-TC0 : under a conjecture of Benjamini, Kalai, and Schramm on their noise stability). We also investigate an analogue of weak-EC for the stronger model of parity decision trees and provide a counter-example to this seemingly stronger version under a conjecture of Montanaro and Osborne.