Abortable reader-writer locks are no more complex than abortable mutex locks

  • Authors:
  • Prasad Jayanti;Zhiyu Liu

  • Affiliations:
  • Department of Computer Science, Dartmouth College, Hanover, New Hampshire;Department of Computer Science, Dartmouth College, Hanover, New Hampshire

  • Venue:
  • DISC'12 Proceedings of the 26th international conference on Distributed Computing
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

When a process attempts to acquire a mutex lock, it may be forced to wait if another process currently holds the lock. In certain applications, such as real-time operating systems and databases, indefinite waiting can cause a process to miss an important deadline [19]. Hence, there has been research on designing abortable mutual exclusion locks, and fairly efficient algorithms of O(logn) RMR complexity have been discovered [11,14] (n denotes the number of processes for which the algorithm is designed). The abort feature is just as important for a reader-writer lock as it is for a mutual exclusion lock, but to the best of our knowledge there are currently no abortable reader-writer locks that are starvation-free. We show the surprising result that any abortable, starvation-free mutual exclusion algorithm of RMR complexity t(n) can be transformed into an abortable, starvation-free reader-writer exclusion algorithm of RMR complexity O(t(n)). Thus, we obtain the first abortable, starvation-free reader-writer exclusion algorithm of O(logn) RMR complexity. Our results apply to the Cache-Coherent (CC) model of multiprocessors.