Energy-based temporal neural networks for imputing missing values

  • Authors:
  • Philemon Brakel;Benjamin Schrauwen

  • Affiliations:
  • Department of Electronics and Information Systems, Ghent University, Gent, Belgium;Department of Electronics and Information Systems, Ghent University, Gent, Belgium

  • Venue:
  • ICONIP'12 Proceedings of the 19th international conference on Neural Information Processing - Volume Part II
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

Imputing missing values in high dimensional time series is a difficult problem. There have been some approaches to the problem [11,8] where neural architectures were trained as probabilistic models of the data. However, we argue that this approach is not optimal. We propose to view temporal neural networks with latent variables as energy-based models and train them for missing value recovery directly. In this paper we introduce two energy-based models. The first model is based on a one dimensional convolution and the second model utilizes a recurrent neural network. We demonstrate how ideas from the energy-based learning framework can be used to train these models to recover missing values. The models are evaluated on a motion capture dataset.