Coupled 802.11 flows in urban channels: model and experimental evaluation

  • Authors:
  • Joseph Camp;Ehsan Aryafar;Edward Knightly

  • Affiliations:
  • Electrical Engineering Department, Southern Methodist University, Dallas, TX;Department of Electrical Engineering, Princeton University, Princeton, NJ;Electrical and Computer Engineering Department, Rice University, Houston, TX

  • Venue:
  • IEEE/ACM Transactions on Networking (TON)
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

Contending flows in multihop 802.11 wireless networks compete with two fundamental asymmetries: 1) channel asymmetry, in which one flow has a stronger signal, potentially yielding physical layer capture; and 2) topological asymmetry, in which one flow has increased channel state information, potentially yielding an advantage in winning access to the channel. Prior work has considered these asymmetries independently with a highly simplified view of the other. However, in this paper, we perform thousands of measurements on coupled flows in urban environments and build a simple yet accurate model that jointly considers information and channel asymmetries. We show that if these two asymmetries are not considered jointly, throughput predictions of even two coupled flows are vastly distorted from reality when traffic characteristics are only slightly altered (e.g., changes to modulation rate, packet size, or access mechanism). These performance modes are sensitive not only to small changes in system properties, but also small-scale link fluctuations that are common in an urban mesh network. We analyze all possible capture relationships for two-flow subtopologies and show that capture of the reverse traffic can allow a previously starving flow to compete fairly. Finally, we show how to extend and apply the model in domains such as modulation rate adaptation and understanding the interaction of control and data traffic.