A study on automatic on-machine inspection system for 3D modeling and measurement of cutting tools

  • Authors:
  • Xi Zhang;Wai-Ming Tsang;Kazuo Yamazaki;Masahiko Mori

  • Affiliations:
  • School of Mechatronics Engineering and Automation, Shanghai University, Shanghai, China;IMS-Mechatronics Laboratory, University of California, Davis, Davis, USA;IMS-Mechatronics Laboratory, University of California, Davis, Davis, USA;Mori Seiki Co., Ltd., Nagoya, Japan

  • Venue:
  • Journal of Intelligent Manufacturing
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

A 3D model of the maximum rotating envelope of a milling cutter with tool holder is required for Computer Aided Manufacturing (CAM) process design and machining simulation. The user may define the 3D model of the whole tool assembly in the tool library of CAM software. However, it is not convenient and reliable. Considering these problems, a new method based on single view 3D reconstruction algorithm has been proposed in previous research work, which is able to quickly reconstruct the 3D model of a cutter with tool holder while they are installed onto the spindle. As the extension of this work, this paper focuses on the recent progresses in order to improve the automation, accuracy, efficiency and reliability of tool modeling system. First, an improved flexible on-machine camera calibration procedure is proposed. The accurate motion of machine tool axis is used to calibrate the camera on machine tool instead of a physical calibration board. The whole procedure of calibration can be conducted automatically by running NC code. Therefore, the automation of vision system can be guaranteed. Second, the contour extraction module is improved by using a method of silhouette image composition. This method is applied to solve the problem of translucent and fuzzy cutter profile induced by motion blur. Third, the new algorithm for contour partitioning and classification are proposed, which is more reliable and robust. The reliability and accuracy of the vision system can be guaranteed. Finally, the vision system with an 8 mm lens and 1 mm extensions has been tested on different type of machine tool with smaller cutters. The average measurement accuracy is about 35 microns verified by comparison with a commercial tool setting system.