A real-time on-chip algorithm for IMU-Based gait measurement

  • Authors:
  • Shenggao Zhu;Hugh Anderson;Ye Wang

  • Affiliations:
  • School of Computing, National University of Singapore, Singapore;School of Computing, National University of Singapore, Singapore;School of Computing, National University of Singapore, Singapore

  • Venue:
  • PCM'12 Proceedings of the 13th Pacific-Rim conference on Advances in Multimedia Information Processing
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper presents a real-time and on-chip gait measurement algorithm used in our Gait Measurement System (GMS). Our GMS is a small foot-mounted device based on an Inertial Measurement Unit (IMU), which contains an accelerometer and a gyroscope. The GMS can compute spatio-temporal gait parameters in real-time and transmit them to a remote receiver. Measured gait parameters include cadence, velocity, stride length, swing/stance ratio and so on. The algorithm is optimized to run in a ATmega328 microprocessor with only 2kB data memory. During a walking session, each stride is recognized instantaneously, and the stride length and other parameters are computed at the same time. Although inexpensive components are utilized, the algorithm achieves high accuracy, with an average stride length error smaller than 3%, and error in total walking distance less than 2%.