Resilience strategies for networked malware detection and remediation

  • Authors:
  • Yue Yu;Michael Fry;Bernhard Plattner;Paul Smith;Alberto Schaeffer-Filho

  • Affiliations:
  • School of Information Technologies, University of Sydney, Australia;School of Information Technologies, University of Sydney, Australia;Computer Engineering and Networks Laboratory, ETH Zurich, Switzerland;Safety and Security Department, AIT Austrian Institute of Technology, Austria;School of Computing and Communications, Lancaster University, UK

  • Venue:
  • NSS'12 Proceedings of the 6th international conference on Network and System Security
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

Network propagated malware such as worms are a potentially serious threat, since they can infect and damage a large number of vulnerable hosts at timescales in which human reaction is unlikely to be effective. Research on worm detection has produced many approaches to identifying them. A common approach is to identify a worm's signature. However, as worms continue to evolve, this method is incapable of detecting and mitigating new worms in real time. In this paper, we propose a novel resilience strategy for the detection and remediation of networked malware based on progressive, multi-stage deployment of resilience mechanisms. Our strategy monitors various traffic features to detect the early onset of an attack, and then applies further mechanisms to progressively identify the attack and apply remediation to protect the network. Our strategy can be adapted to detect known attacks such as worms, and also to provide some level of remediation for new, unknown attacks. Advantages of our approach are demonstrated via simulation of various types of worm attack on an Autonomous System infrastructure. Our strategy is flexible and adaptable, and we show how it can be extended to identify and remediate network challenges other than worms.