Architectural Resiliency in Distributed Computing

  • Authors:
  • Rao Mikkilineni

  • Affiliations:
  • Kawa Objects Inc., Cupertino, CA, USA

  • Venue:
  • International Journal of Grid and High Performance Computing
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

Cellular organisms have evolved to manage themselves and their interactions with their surroundings with a high degree of resiliency, efficiency and scalability. Signaling and collaboration of autonomous distributed computing elements accomplishing a common goal with optimal resource utilization are the differentiating characteristics that contribute to the computing model of cellular organisms. By introducing signaling and self-management abstractions in an autonomic computing element called Distributed Intelligent Managed Element DIME, the authors improve the architectural resiliency, efficiency, and scaling in distributed computing systems. Described are two implementations of DIME network architecture to demonstrate auto-scaling, self-repair, dynamic performance optimization, and end to end distributed transaction management. By virtualizing a process by converting it into a DIME in the Linux operating system and also building a new native operating system called Parallax OS optimized for Intel-multi-core processors, which converts each core into a DIME, implications of the DIME computing model to future cloud computing services and datacenter infrastructure management practices and discuss the relationship of the DIME computing model to current discussions on Turing machines, Gödel's theorems and a call for no less than a Kuhnian paradigm shift by some computer scientists.