Providing DoS resistance for signature-based broadcast authentication in sensor networks

  • Authors:
  • Qi Dong;Donggang Liu;Peng Ning

  • Affiliations:
  • University of Texas at Arlington, Arlington, TX;University of Texas at Arlington, Arlington, TX;North Carolina State University, Raleigh, NC

  • Venue:
  • ACM Transactions on Embedded Computing Systems (TECS)
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

Recent studies have demonstrated that it is feasible to perform public key cryptographic operations on resource-constrained sensor platforms. However, the significant energy consumption introduced by public key operations makes any public key-based protocol an easy target of Denial-of-Service (DoS) attacks. For example, if digital signature schemes such as ECDSA are used directly for broadcast authentication without further protection, an attacker can simply broadcast fake messages and force the receiving nodes to perform a huge number of unnecessary signature verifications, eventually exhausting their battery power. This paper shows how to mitigate such DoS attacks when digital signatures are used for broadcast authentication in sensor networks. Specifically, this paper first presents two filtering techniques, the group-based filter and the key chain-based filter, to handle the DoS attacks against signature verification. Both methods can significantly reduce the number of unnecessary signature verifications when a sensor node is under DoS attacks. This paper then combines these two filters and proposes a hybrid solution to further improve the performance.