Model checking database applications

  • Authors:
  • Milos Gligoric;Rupak Majumdar

  • Affiliations:
  • University of Illinois at Urbana-Champaign;Max Planck Institute for Software Systems, Germany

  • Venue:
  • TACAS'13 Proceedings of the 19th international conference on Tools and Algorithms for the Construction and Analysis of Systems
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

We describe the design of DPF, an explicit-state model checker for database-backed web applications. DPF interposes between the program and the database layer, and precisely tracks the effects of queries made to the database. We experimentally explore several implementation choices for the model checker: stateful vs. stateless search, state storage and backtracking strategies, and dynamic partial-order reduction. In particular, we define independence relations at different granularity levels of the database (at the database, relation, record, attribute, or cell level), and show the effectiveness of dynamic partial-order reduction based on these relations. We apply DPF to look for atomicity violations in web applications. Web applications maintain shared state in databases, and typically there are relatively few database accesses for each request. This implies concurrent interactions are limited to relatively few and well-defined points, enabling our model checker to scale. We explore the performance implications of various design choices and demonstrate the effectiveness of DPF on a set of Java benchmarks. Our model checker was able to find new concurrency bugs in two open-source web applications, including in a standard example distributed with the Spring framework.