DeNovoND: efficient hardware support for disciplined non-determinism

  • Authors:
  • Hyojin Sung;Rakesh Komuravelli;Sarita V. Adve

  • Affiliations:
  • University of Illinois at Urbana-Champaign, Urbana, IL, USA;University of Illinois at Urbana-Champaign, Urbana, IL, USA;University of Illinois at Urbana-Champaign, Urbana, IL, USA

  • Venue:
  • Proceedings of the eighteenth international conference on Architectural support for programming languages and operating systems
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

Recent work has shown that disciplined shared-memory programming models that provide deterministic-by-default semantics can simplify both parallel software and hardware. Specifically, the DeNovo hardware system has shown that the software guarantees of such models (e.g., data-race-freedom and explicit side-effects) can enable simpler, higher performance, and more energy-efficient hardware than the current state-of-the-art for deterministic programs. Many applications, however, contain non-deterministic parts; e.g., using lock synchronization. For commercial hardware to exploit the benefits of DeNovo, it is therefore necessary to extend DeNovo to support non-deterministic applications. This paper proposes DeNovoND, a system that supports lock-based, disciplined non-determinism, with the simplicity, performance, and energy benefits of DeNovo. We use a combination of distributed queue-based locks and access signatures to implement simple memory consistency semantics for safe non-determinism, with a coherence protocol that does not require transient states, invalidation traffic, or directories, and does not incur false sharing. The resulting system is simpler, shows comparable or better execution time, and has 33% less network traffic on average (translating directly into energy savings) relative to a state-of-the-art invalidation-based protocol for 8 applications designed for lock synchronization.