Optimizing virtual machine live storage migration in heterogeneous storage environment

  • Authors:
  • Ruijin Zhou;Fang Liu;Chao Li;Tao Li

  • Affiliations:
  • University of Florida, Gainesville, FL, USA;National University of Defense Technology, Changsha, China;University of Florida, Gainesville, FL, USA;University of Florida, Gainesville, FL, USA

  • Venue:
  • Proceedings of the 9th ACM SIGPLAN/SIGOPS international conference on Virtual execution environments
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

Virtual machine (VM) live storage migration techniques significantly increase the mobility and manageability of virtual machines in the era of cloud computing. On the other hand, as solid state drives (SSDs) become increasingly popular in data centers, VM live storage migration will inevitably encounter heterogeneous storage environments. Nevertheless, conventional migration mechanisms do not consider the speed discrepancy and SSD's wear-out issue, which not only causes significant performance degradation but also shortens SSD's lifetime. This paper, for the first time, addresses the efficiency of VM live storage migration in heterogeneous storage environments from a multi-dimensional perspective, i.e., user experience, device wearing, and manageability. We derive a flexible metric (migration cost), which captures various design preference. Based on that, we propose and prototype three new storage migration strategies, namely: 1) Low Redundancy (LR), which generates the least amount of redundant writes; 2) Source-based Low Redundancy (SLR), which keeps the balance between IO performance and write redundancy; and 3) Asynchronous IO Mirroring, which seeks the highest IO performance. The evaluation of our prototyped system shows that our techniques outperform existing live storage migration by a significant margin. Furthermore, by adaptively mixing our proposed schemes, the cost of massive VM live storage migration can be even lower than that of only using the best of individual mechanism.