An automatic physical design tool for clustered column-stores

  • Authors:
  • Alexander Rasin;Stan Zdonik

  • Affiliations:
  • DePaul University, Chicago, IL;Brown University, Providence, RI

  • Venue:
  • Proceedings of the 16th International Conference on Extending Database Technology
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

Good database design is typically a very difficult and costly process. As database systems get more complex and as the amount of data under management grows, the stakes increase accordingly. Past research produced a number of design tools capable of automatically selecting secondary indexes and materialized views for a known workload. However, a significant bulk of research on automated database design has been done in the context of row-store DBMSes. While this work has produced effective design tools, new specialized database architectures demand a rethinking of automated design algorithms. In this paper, we present results for an automatic design tool that is aimed at column-oriented DBMSes on OLAP workloads. In particular, we have chosen a commercial column store DBMS that supports data sorting. In this setting, the key problem is selecting proper sort orders and compression schemes for the columns as well as appropriate pre-join views. This paper describes our automatic design algorithms as well as the results of some experiments using it on realistic data sets.