From sequential to parallel local search for SAT

  • Authors:
  • Alejandro Arbelaez;Philippe Codognet

  • Affiliations:
  • JFLI, University of Tokyo, Japan;JFLI - CNRS / UPMC, University of Tokyo, Japan, Dept. of Computer Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan

  • Venue:
  • EvoCOP'13 Proceedings of the 13th European conference on Evolutionary Computation in Combinatorial Optimization
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

In the domain of propositional Satisfiability Problem (SAT), parallel portfolio-based algorithms have become a standard methodology for both complete and incomplete solvers. In this methodology several algorithms explore the search space in parallel, either independently or cooperatively with some communication between the solvers. We conducted a study of the scalability of several SAT solvers in different application domains (crafted, verification, quasigroups and random instances) when drastically increasing the number of cores in the portfolio, up to 512 cores. Our experiments show that on different problem families the behaviors of different solvers vary greatly. We present an empirical study that suggests that the best sequential solver is not necessary the one with the overall best parallel speedup.