Adapting the pheromone evaporation rate in dynamic routing problems

  • Authors:
  • Michalis Mavrovouniotis;Shengxiang Yang

  • Affiliations:
  • School of Computer Science and Informatics, De Montfort University, Leicester, United Kingdom;School of Computer Science and Informatics, De Montfort University, Leicester, United Kingdom

  • Venue:
  • EvoApplications'13 Proceedings of the 16th European conference on Applications of Evolutionary Computation
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

Ant colony optimization (ACO) algorithms have proved to be able to adapt to dynamic optimization problems (DOPs) when stagnation behaviour is avoided. Several approaches have been integrated with ACO to improve its performance for DOPs. The adaptation capabilities of ACO rely on the pheromone evaporation mechanism, where the rate is usually fixed. Pheromone evaporation may eliminate pheromone trails that represent bad solutions from previous environments. In this paper, an adaptive scheme is proposed to vary the evaporation rate in different periods of the optimization process. The experimental results show that ACO with an adaptive pheromone evaporation rate achieves promising results, when compared with an ACO with a fixed pheromone evaporation rate, for different DOPs.