Distributed Matching with Mixed Maximum-Minimum Utilities

  • Authors:
  • Amos Azaria;David Sarner;Yonatan Aumann

  • Affiliations:
  • -;-;-

  • Venue:
  • WI-IAT '12 Proceedings of the The 2012 IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technology - Volume 02
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper we study distributed agent matching in environments characterized by costly exploration, where each agent's utility from forming a partnership is influenced by both the maximum and the minimum among the two agent's competence. This kind of utility function is somehow more applicable, compared to the one used in related work that takes the utility to be either the type of the agent partner or "standard" functions such as average or multiplication of the two types. The use of the hybrid min-max utility function is favorable whenever the performance of the agents forming a partnership is principally affected by the most (or least) competent among the two. This paper supplies a cohesive analysis for the min-max case, proving the equilibrium structure for the different min-max linear combination that may be used. We show that in any case that an agent sets its acceptance threshold below its own type it is guaranteed that any agent with a type between this threshold and its own will accept it (the agent) as a partner as well. This result substantially facilitates the calculation of equilibrium for such settings, e.g., when the set of types is finite.