The evolutionary development of roughness prediction models

  • Authors:
  • Maciej Grzenda;Andres Bustillo

  • Affiliations:
  • Faculty of Mathematics and Information Science, Warsaw University of Technology, Pl. Politechniki 1, 00-661 Warszawa, Poland;Department of Civil Engineering, University of Burgos, 09006 Burgos, Spain

  • Venue:
  • Applied Soft Computing
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

The vigorous expansion of wind energy power generation over the last decade has also entailed innovative improvements to surface roughness prediction models applied to high-torque milling operations. Artificial neural networks are the most widely used soft computing technique for the development of these prediction models. In this paper, we concentrate on the initial data transformation and its effect on the prediction of surface roughness in high-torque face milling operations. An extensive data set is generated from experiments performed under industrial conditions. The data set includes a very broad set of different parameters that influence surface roughness: cutting tool properties, machining parameters and cutting phenomena. Some of these parameters may potentially be related to the others or may only have a minor influence on the prediction model. Moreover, depending on the number of available records, the machine learning models may or may not be capable of modelling some of the underlying dependencies. Hence, the need to select an appropriate number of input signals and their matching prediction model configuration. A hybrid algorithm that combines a genetic algorithm with neural networks is proposed in this paper, in order to address the selection of relevant parameters and their appropriate transformation. The algorithm has been tested in a number of experiments performed under workshop conditions with data sets of different sizes to investigate the impact of available data on the selection of corresponding data transformation. Data set size has a direct influence on the accuracy of the prediction models for roughness modelling, but also on the use of individual parameters and transformed features. The results of the tests show significant improvements in the quality of prediction models constructed in this way. These improvements are evident when these models are compared with standard multilayer perceptrons trained with all the parameters and with data reduced through standard Principal Component Analysis practice.