A uniformly second order fast sweeping method for eikonal equations

  • Authors:
  • Songting Luo

  • Affiliations:
  • Department of Mathematics, Iowa State University, Ames, IA 50011, USA

  • Venue:
  • Journal of Computational Physics
  • Year:
  • 2013

Quantified Score

Hi-index 31.45

Visualization

Abstract

A uniformly second order method with a local solver based on the piecewise linear discontinuous Galerkin formulation is introduced to solve the eikonal equation with Dirichlet boundary conditions. The method utilizes an interesting phenomenon, referred as the superconvergence phenomenon, that the numerical solution of monotone upwind schemes for the eikonal equation is first order accurate on both its value and gradient when the solution is smooth. This phenomenon greatly simplifies the local solver based on the discontinuous Galerkin formulation by reducing its local degrees of freedom from two (1-D) (or three (2-D), or four (3-D)) to one with the information of the gradient frozen. When considering the eikonal equation with point-source conditions, we further utilize a factorization approach to resolve the source singularities of the eikonal by decomposing it into two parts, either multiplicatively or additively. One part is known and captures the source singularities; the other part serves as a correction term that is differentiable at the sources and satisfies the factored eikonal equations. We extend the second order method to solve the factored eikonal equations to compute the correction term with second order accuracy, then recover the eikonal with second order accuracy. Numerical examples are presented to demonstrate the performance of the method.