An online cost sensitive decision-making method in crowdsourcing systems

  • Authors:
  • Jinyang Gao;Xuan Liu;Beng Chin Ooi;Haixun Wang;Gang Chen

  • Affiliations:
  • National University of Singapore, Singapore, Singapore;National University of Singapore, Singapore, Singapore;National University of Singapore, Singapore, Singapore;Microsoft Research Asia, Beijing, China;Zhejiang University, Hangzhou, China

  • Venue:
  • Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

Crowdsourcing has created a variety of opportunities for many challenging problems by leveraging human intelligence. For example, applications such as image tagging, natural language processing, and semantic-based information retrieval can exploit crowd-based human computation to supplement existing computational algorithms. Naturally, human workers in crowdsourcing solve problems based on their knowledge, experience, and perception. It is therefore not clear which problems can be better solved by crowdsourcing than solving solely using traditional machine-based methods. Therefore, a cost sensitive quantitative analysis method is needed. In this paper, we design and implement a cost sensitive method for crowdsourcing. We online estimate the profit of the crowdsourcing job so that those questions with no future profit from crowdsourcing can be terminated. Two models are proposed to estimate the profit of crowdsourcing job, namely the linear value model and the generalized non-linear model. Using these models, the expected profit of obtaining new answers for a specific question is computed based on the answers already received. A question is terminated in real time if the marginal expected profit of obtaining more answers is not positive. We extends the method to publish a batch of questions in a HIT. We evaluate the effectiveness of our proposed method using two real world jobs on AMT. The experimental results show that our proposed method outperforms all the state-of-art methods.