Queueing system topologies with limited flexibility

  • Authors:
  • John N. Tsitsiklis;Kuang Xu

  • Affiliations:
  • MIT, Cambridge, MA, USA;MIT, Cambridge, MA, USA

  • Venue:
  • Proceedings of the ACM SIGMETRICS/international conference on Measurement and modeling of computer systems
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

We study a multi-server model with n flexible servers and rn queues, connected through a fixed bipartite graph, where the level of flexibility is captured by the average degree, d(n), of the queues. Applications in content replication in data centers, skill-based routing in call centers, and flexible supply chains are among our main motivations. We focus on the scaling regime where the system size n tends to infinity, while the overall traffic intensity stays fixed. We show that a large capacity region (robustness) and diminishing queueing delay (performance) are jointly achievable even under very limited flexibility (d(n) l n). In particular, when d(n) gg ln n , a family of random-graph-based interconnection topologies is (with high probability) capable of stabilizing all admissible arrival rate vectors (under a bounded support assumption), while simultaneously ensuring a diminishing queueing delay, of order ln n/ d(n), as n- ∞. Our analysis is centered around a new class of virtual-queue-based scheduling policies that rely on dynamically constructed partial matchings on the connectivity graph.