Labels vs. Pairwise Constraints: A Unified View of Label Propagation and Constrained Spectral Clustering

  • Authors:
  • Xiang Wang;Buyue Qian;Ian Davidson

  • Affiliations:
  • -;-;-

  • Venue:
  • ICDM '12 Proceedings of the 2012 IEEE 12th International Conference on Data Mining
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

In many real-world applications we can model the data as a graph with each node being an instance and the edges indicating a degree of similarity. Side information is often available in the form of labels for a small subset of instances, which gives rise to two problem settings and two types of algorithms. In the label propagation style algorithms, the known labels are propagated to the unlabeled nodes. In the constrained clustering style algorithms, known labels are first converted to pair wise constraints (Must-Link and Cannot-Link), then a constrained cut is computed as a tradeoff between minimizing the cut cost and maximizing the constraint satisfaction. Both techniques are evaluated by their ability to recover the ground truth labeling, i.e. by 0/1 loss function either directly on the labels or on the pair wise relations derived from the labels. These two fields have developed separately, but in this paper, we show that they are indeed related. This insight allows us to propose a novel way to generate constraints from the propagated labels, which our empirical study shows outperforms and is more stable than the state-of-the-art label propagation and constrained spectral clustering algorithms.