Real-time routing in wireless sensor networks: A potential field approach

  • Authors:
  • Yinsheng Xu;Fengyuan Ren;Tao He;Chuang Lin;Canfeng Chen;Sajal K. Das

  • Affiliations:
  • Tsinghua University, Beijing, China;Tsinghua University, Beijing, China;Tsinghua University, Beijing, China;Tsinghua University, Beijing, China;Nokia Research Center, Beijing, China;University of Texas at Arlington, Arlington, TX

  • Venue:
  • ACM Transactions on Sensor Networks (TOSN)
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

Wireless Sensor Networks (WSNs) are embracing an increasing number of real-time applications subject to strict delay constraints. Utilizing the methodology of potential field in physics, in this article we effectively address the challenges of real-time routing in WSNs. In particular, based on a virtual composite potential field, we propose the Potential-based Real-Time Routing (PRTR) protocol that supports real-time routing using multipath transmission. PRTR minimizes delay for real-time traffic and alleviates possible congestions simultaneously. Since the delay bounds of real-time flows are extremely important, the end-to-end delay bound for a single flow is derived based on the Network Calculus theory. The simulation results show that PRTR minimizes the end-to-end delay for real-time routing, and also guarantees a tight bound on the delay.