View-Invariant object detection by matching 3d contours

  • Authors:
  • Tianyang Ma;Meng Yi;Longin Jan Latecki

  • Affiliations:
  • Dept. of Computer and Information Sciences, Temple University, Philadelphia;Dept. of Computer and Information Sciences, Temple University, Philadelphia;Dept. of Computer and Information Sciences, Temple University, Philadelphia

  • Venue:
  • ACCV'12 Proceedings of the 11th international conference on Computer Vision - Volume 2
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

We propose an approach for view-invariant object detection directly in 3D with following properties: (i) The detection is based on matching of 3D contours to 3D object models. (ii) The matching is constrained with qualitative spatial relations such as above/below, left/right, and front/back. (iii) In order to ensure that any matching solution satisfies these constraints, we formulate the matching problem as finding maximum weight subgraphs with hard constraints, and utilize a novel inference framework to solve this problem. Given a single view of an RGB-D camera, we obtain 3D contours by "back projecting" 2D contours extracted in the depth map. As our experimental results demonstrate, the proposed approach significantly outperforms the state-of-the-art 2D approaches, in particular, latent SVM object detector, as well as recently proposed approaches for object detection in RGB-D data.