EyeQ: practical network performance isolation at the edge

  • Authors:
  • Vimalkumar Jeyakumar;Mohammad Alizadeh;David Mazières;Balaji Prabhakar;Changhoon Kim;Albert Greenberg

  • Affiliations:
  • Stanford University;Stanford University and Insieme Networks;Stanford University;Stanford University;Windows Azure;Windows Azure

  • Venue:
  • nsdi'13 Proceedings of the 10th USENIX conference on Networked Systems Design and Implementation
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

The datacenter network is shared among untrusted tenants in a public cloud, and hundreds of services in a private cloud. Today we lack fine-grained control over network bandwidth partitioning across tenants. In this paper we present EyeQ, a simple and practical system that provides tenants with bandwidth guarantees as if their endpoints were connected to a dedicated switch. To realize this goal, EyeQ leverages the high bisection bandwidth in a datacenter fabric and enforces admission control on traffic, regardless of the tenant transport protocol. We show that this pushes bandwidth contention to the network's edge, enabling EyeQ to support end-to-end minimum bandwidth guarantees to tenant end-points in a simple and scalable manner at the servers. EyeQ requires no changes to applications and is deployable with support from the network available today. We evaluate EyeQ with an efficient software implementation at 10Gb/s speeds using unmodified applications and adversarial traffic patterns. Our evaluation demonstrates EyeQ's promise of predictable network performance isolation. For instance, even with an adversarial tenant with bursty UDP traffic, EyeQ is able to maintain the 99.9th percentile latency for a collocated memcached application close to that of a dedicated deployment.