Detection and characterization of multiple power quality disturbances with a fast S-transform and decision tree based classifier

  • Authors:
  • Milan Biswal;P. K. Dash

  • Affiliations:
  • Silicon Institute of Technology, Bhubaneswar, India;Siksha O Anusandhan University, Bhubaneswar, India

  • Venue:
  • Digital Signal Processing
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper proposes fast variants of the discrete S-transform (FDST) algorithm to accurately extract the time localized spectral characteristics of nonstationary signals. Novel frequency partitioning schemes along with band pass filtering are proposed to reduce the computational cost of S-transform significantly. A generalized window function is introduced to improve the energy concentration of the time-frequency (TF) distribution. An application of the proposed algorithms is extended for detection and classification of various nonstationary power quality (PQ) disturbances. The relevant features required for classification were extracted from the time-frequency distribution of the nonstationary power signal patterns. An automated decision tree (DT) construction algorithm was employed to select optimal set of features based on a specified optimality criterion for extraction of the decision rules. The set of decision rules thus obtained were used for identification of the PQ disturbance types. Various single as well as simultaneous power signal disturbances were considered in this paper to prove the efficiency of proposed classification scheme. A comparison of the classification accuracies with techniques proposed earlier, clearly demonstrates the improved performance. The major contributions of this manuscript are new FDST algorithms for fast and accurate time-frequency representation and an efficient classification algorithm for identifying PQ disturbances. The advantages of the classification algorithm are (i) accurate feature derivation from the TF distribution and optimum feature selection by the DT construction algorithm, (ii) robust performance at different signal-to-noise ratios, (iii) simple decision rules for classification, and (iv) recognition of simultaneous PQ events.