ALD: adaptive layer distribution for scalable video

  • Authors:
  • Jason J. Quinlan;Ahmed H. Zahran;Cormac J. Sreenan

  • Affiliations:
  • University College Cork, Ireland;Cairo University, Egypt;University College Cork, Ireland

  • Venue:
  • Proceedings of the 4th ACM Multimedia Systems Conference
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

Bandwidth constriction and datagram loss are prominent issues that affect the perceived quality of streaming video over lossy networks, such as wireless. The use of layered video coding seems attractive as a means to alleviate these issues, but its adoption has been held back in large part by the inherent priority assigned to the critical lower layers and the consequences for quality that result from their loss. The proposed use of forward error correction (FEC) as a solution only further burdens the bandwidth availability and can negate the perceived benefits of increased stream quality. In this paper, we propose Adaptive Layer Distribution (ALD) as a novel scalable media delivery technique that optimises the tradeoff between the streaming bandwidth and error resiliency. ALD is based on the principle of layer distribution, in which the critical stream data is spread amongst all datagrams thus lessening the impact on quality due to network losses. Additionally, ALD provides a parameterised mechanism for dynamic adaptation of the scalable video, while providing increased resilience to the highest quality layers. Our experimental results show that ALD improves the perceived quality and also reduces the bandwidth demand by up to 36% in comparison to the well-known Multiple Description Coding (MDC) technique.