A candidate filtering mechanism for fast top-k query processing on modern cpus

  • Authors:
  • Constantinos Dimopoulos;Sergey Nepomnyachiy;Torsten Suel

  • Affiliations:
  • Polytechnic Institute of NYU, Brooklyn, NY, USA;Polytechnic Institute of NYU, Brooklyn, NY, USA;Polytechnic Institute of NYU, Brooklyn, NY, USA

  • Venue:
  • Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

A large amount of research has focused on faster methods for finding top-k results in large document collections, one of the main scalability challenges for web search engines. In this paper, we propose a method for accelerating such top-k queries that builds on and generalizes methods recently proposed by several groups of researchers based on Block-Max Indexes. In particular, we describe a system that uses a new filtering mechanism, based on a combination of block maxima and bitmaps, that radically reduces the number of documents that have to be further evaluated. Our filtering mechanism exploits the SIMD processing capabilities of current microprocessors, and it is optimized through caching policies that select and store suitable filter structures based on properties of the query load. Our experimental evaluation shows that the mechanism results in very significant speed-ups for disjunctive top-k queries under several state-of-the-art algorithms, including a speed-up of more than a factor of 2 over the fastest previously known methods.