Optimizing top-n collaborative filtering via dynamic negative item sampling

  • Authors:
  • Weinan Zhang;Tianqi Chen;Jun Wang;Yong Yu

  • Affiliations:
  • University College London, London, United Kingdom;Shanghai Jiao Tong University, Shanghai, China;University College London, London, United Kingdom;Shanghai Jiao Tong University, Shanghai, China

  • Venue:
  • Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

Collaborative filtering techniques rely on aggregated user preference data to make personalized predictions. In many cases, users are reluctant to explicitly express their preferences and many recommender systems have to infer them from implicit user behaviors, such as clicking a link in a webpage or playing a music track. The clicks and the plays are good for indicating the items a user liked (i.e., positive training examples), but the items a user did not like (negative training examples) are not directly observed. Previous approaches either randomly pick negative training samples from unseen items or incorporate some heuristics into the learning model, leading to a biased solution and a prolonged training period. In this paper, we propose to dynamically choose negative training samples from the ranked list produced by the current prediction model and iteratively update our model. The experiments conducted on three large-scale datasets show that our approach not only reduces the training time, but also leads to significant performance gains.