The parallel system for integrating impact models and sectors (pSIMS)

  • Authors:
  • Joshua Elliott;David Kelly;Neil Best;Michael Wilde;Michael Glotter;Ian Foster

  • Affiliations:
  • University of Chicago;University of Chicago;University of Chicago;University of Chicago;University of Chicago;University of Chicago

  • Venue:
  • Proceedings of the Conference on Extreme Science and Engineering Discovery Environment: Gateway to Discovery
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present a framework for massively parallel simulations of climate impact models in agriculture and forestry: the parallel System for Integrating Impact Models and Sectors (pSIMS). This framework comprises a) tools for ingesting large amounts of data from various sources and standardizing them to a versatile and compact data type; b) tools for translating this standard data type into the custom formats required for point-based impact models in agriculture and forestry; c) a scalable parallel framework for performing large ensemble simulations on various computer systems, from small local clusters to supercomputers and even distributed grids and clouds; d) tools and data standards for reformatting outputs for easy analysis and visualization; and d) a methodology and tools for aggregating simulated measures to arbitrary spatial scales such as administrative districts (counties, states, nations) or relevant environmental demarcations such as watersheds and river-basins. We present the technical elements of this framework and the results of an example climate impact assessment and validation exercise that involved large parallel computations on XSEDE.