A game-theoretic model and best-response learning method for ad hoc coordination in multiagent systems

  • Authors:
  • Stefano V. Albrecht;Subramanian Ramamoorthy

  • Affiliations:
  • School of Informatics, University of Edinburgh, Edinburgh, United Kingdom;School of Informatics, University of Edinburgh, Edinburgh, United Kingdom

  • Venue:
  • Proceedings of the 2013 international conference on Autonomous agents and multi-agent systems
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

The ad hoc coordination problem is to design an ad hoc agent which is able to achieve optimal flexibility and efficiency in a multiagent system that admits no prior coordination between the ad hoc agent and the other agents. We conceptualise this problem formally as a stochastic Bayesian game in which the behaviour of a player is determined by its type. Based on this model, we derive a solution, called Harsanyi-Bellman Ad Hoc Coordination (HBA), which utilises a set of user-defined types to characterise players based on their observed behaviours. We evaluate HBA in the level-based foraging domain, showing that it outperforms several alternative algorithms using just a few user-defined types. We also report on a human-machine experiment in which the humans played Prisoner's Dilemma and Rock-Paper-Scissors against HBA and alternative algorithms. The results show that HBA achieved equal efficiency but a significantly higher welfare and winning rate.