Sensitivity analysis for arbitrary activation patterns in real-time systems

  • Authors:
  • Moritz Neukirchner;Sophie Quinton;Tobias Michaels;Philip Axer;Rolf Ernst

  • Affiliations:
  • Technische Universität Braunschweig, Braunschweig, Germany;Technische Universität Braunschweig, Braunschweig, Germany;Technische Universität Braunschweig, Braunschweig, Germany;Technische Universität Braunschweig, Braunschweig, Germany;Technische Universität Braunschweig, Braunschweig, Germany

  • Venue:
  • Proceedings of the Conference on Design, Automation and Test in Europe
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

Response time analysis, which determines whether timing guarantees are satisfied for a given system, has matured to industrial practice and is able to consider even complex activation patterns modelled through arrival curves or minimum distance functions. On the other side, sensitivity analysis, which determines bounds on parameter variations under which constraints are still satisfied, is largely restricted to variation of single-valued parameters as e.g. task periods. In this paper we provide a sensitivity analysis to determine the bounds on the admissible activation pattern of a task, modelled through a minimum distance function. In an evaluation on a set of synthetic testcases we show, that the proposed algorithm provides significantly tighter bounds, than previous exact analyses, that determine allowable parametrizations of activation patterns.