MARTHA: architecture for control and emulation of power electronics and smart grid systems

  • Authors:
  • Michel A. Kinsy;Ivan Celanovic;Omer Khan;Srinivas Devadas

  • Affiliations:
  • Massachusetts Institute of Technology;Massachusetts Institute of Technology;University of Connecticut;Massachusetts Institute of Technology

  • Venue:
  • Proceedings of the Conference on Design, Automation and Test in Europe
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper presents a novel Multicore Architecture for Real-Time Hybrid Applications (MARTHA) with time-predictable execution, low computational latency, and high performance that meets the requirements for control, emulation and estimation of next-generation power electronics and smart grid systems. Generic general-purpose architectures running real-time operating systems (RTOS) or quality of service (QoS) schedulers have not been able to meet the hard real-time constraints required by these applications. We present a framework based on switched hybrid automata for modeling power electronics applications. Our approach allows a large class of power electronics circuits to be expressed as switched hybrid models which can be executed on a single hardware platform.