Lighting the dark silicon by exploiting heterogeneity on future processors

  • Authors:
  • Ying Zhang;Lu Peng;Xin Fu;Yue Hu

  • Affiliations:
  • Louisiana State University;Louisiana State University;University of Kansas;Louisiana State University

  • Venue:
  • Proceedings of the 50th Annual Design Automation Conference
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

As we embrace the deep submicron era, dark silicon caused by the failure of Dennard scaling impedes us from attaining commensurate performance benefit from the increased number of transistors. To alleviate the dark silicon and effectively leverage the advantage of decreased feature size, we consider a set of design paradigms by exploiting heterogeneity in the processor manufacturing. We conduct a thorough investigation on these design patterns from different evaluation perspectives including performance, energy-efficiency, and cost-efficiency. Our observations can provide insightful guidance to the design of future processors in the presence of dark silicon.