LED-to-LED visible light communication networks

  • Authors:
  • Stefan Schmid;Giorgio Corbellini;Stefan Mangold;Thomas R. Gross

  • Affiliations:
  • Disney Research & ETH Zurich, Zurich, Switzerland;Disney Research, Zurich, Switzerland;Disney Research, Zurich, Switzerland;ETH Zurich, Zurich, Switzerland

  • Venue:
  • Proceedings of the fourteenth ACM international symposium on Mobile ad hoc networking and computing
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

Visible Light Communication (VLC) with Light Emitting Diodes (LEDs) as transmitters and receivers enables low bitrate wireless adhoc networking. LED-to-LED VLC adhoc networks with VLC devices communicating with each other over free-space optical links typically achieve a throughput of less than a megabit per second at distances of no more than a few meters. LED-to-LED VLC adhoc networks are useful for combining a smart illumination with low-cost networking. We present and evaluate a software-based VLC physical layer and a VLC medium access control layer that retain the simplicity of the LED-to-LED approach. The design satisfies the requirement that LEDs should always be perceived as on with constant brightness. In each VLC device, in addition to an LED, only a low-cost microcontroller is required for handling the software-based communication protocol. The results of our performance measurements confirm recent claims about the potential of LED-to-LED VLC adhoc networks as a useful technology for sensor networks, smart and connected consumer devices, and the Internet-of-Things.